Forecasting GDP Growth in Sri Lanka: Dynamic Insights from Harvey-Type Time Series Decomposition Modelsds
A. N. Kurukulasooriya
References
Andrews, R. L. (1994).  Forecasting performance of structural time series models. Journal of  Business and Economic Statistics, 12(1), 129–133. https://doi.org/10.2307/1391929 
Barroe, R. J. (1991). Economic  growth in a cross section of countries. The Quarterly Journal of Economics,  106(2), 407–443.
Bäurle, G., Steiner, E., &  Züllig, G. (2021). Forecasting the production side of GDP. Journal of  Forecasting, 40, 458–480. https://doi.org/10.1002/for.2725 
Central Bank of Sri Lanka.  (2022). Annual report. https://www.cbsl.gov.lk
Cleveland, R. B., Clevelan, W.  S., Mc Rae, J. E., & Terpenning, I. (1990). STL: A seasonal trend  decompositionprocedure based on Loess. Journal of Official Statistics,  6(1), 3-33.
Costanza, R., Hart, M.,  Posner, S., & Talberth, J. (2009). Beyond GDP: The need for new measures  of progress. Boston University.
Dilhani, E. V. D. (2017).  Forecasting gross domestic production (GDP) of Sri Lanka from 2016–2025: An  empirical study. In International Research Sessions (Vol. 21, p. 2).  University of Peradeniya. Retrieved May 22, 2024, from file:///C:/Users/USER/Downloads/E.V.D.Dilhani.pdf.
Dovern, J. (2013). When are  GDP forecasts updated? Evidence from a large international panel. Economics  Letters, 120(3), 521–524. https://doi.org/10.1016/j.econlet.2013.06.007
Dreuw, P. (2023). Structural  time series models and synthetic controls—Assessing the impact of the euro  adoption. Empirical Economics, 64(2), 681–725. https://doi.org/10.1007/s00181-022-02257-x 
Dudek, G. (2023). STD: A  seasonal-trend dispersion decomposition of time series. IEEE Transactions on  Knowledge and Data Engineering, 35, 10339-10350.  doi:10.1109/TKDE.2023.3268125
Eftimoski, D. (2019).  Forecasting of Macedonian GDP: Comparing the factor model with macroeconomic  structural equation model. Romanian Journal of Economic Forecasting, 22(2),  32–53.
Fioramonti, L. (2013). Gross  domestic problem: The politics behind the world’s most powerful number. Zed  Books.
Guillén, Á., & Rodríguez,  G. (2014). Trend-cycle decomposition for Peruvian GDP: Application of an  alternative method. Latin American Economic Review, 23(5), 1–44.  https://doi.org/10.1007/s40503-014-0005-3
Gupta, M., & Minai, M. H.  (2019). An empirical analysis of forecast performance of the GDP growth in  India. Global Business Review, 20(2), 368–386.  https://doi.org/10.1177/0972150918825207
Harvey, A. C. (1985). Trends  and cycles in the macroeconomic time series. Journal of Business &  Economic Statistics, 3(3), 216–227. https://doi.org/10.2307/1391592
Harvey, A. C. (1989). Forecasting,  structural time series models and the Kalman filter. Cambridge University  Press.
Harvey, A. C. (1996).  Intervention analysis with control groups. International Statistical Review,  64(3), 313–328. https://doi.org/10.2307/1403788
Harvey, A. C., & Durbin,  J. (1986). The effects of seat belt legislation on British road casualties: A  case study in structural time series modelling. Journal of the Royal  Statistical Society: Series A, 149(3), 187–227.  https://doi.org/10.2307/2981553
Harvey, A. C., & Koopman,  S. J. (1992). Diagnostic checking of unobserved-components time series models. Journal  of Business & Economic Statistics, 10(4), 377–389.  https://doi.org/10.2307/1391813
Harvey, A. C., & Peters,  S. (1990). Estimation procedure for structural time series models. Journal  of Forecasting, 9(2), 89–108. https://doi.org/10.1002/for.3980090203
Hyndman, R. J., &  Athanasopoulos, G. (2021). Forecasting: Principles and practice (3rd  ed.). OTexts. https://otexts.com/fpp3/ 
International Monetary Fund.  (2024). World economic outlook: Policy pivot, rising threats. https://www.imf.org 
Jeyarajah, S. (2022).  Modelling and forecasting using ARIMA: An empirical study of GDP in Sri Lanka. International  Journal of Research Publications, 105(1), 502–509.  https://doi.org/10.47119/IJRP1001051720223659
Kapetanios, G., Masolo, R. M.,  & Petrova, K. (2019). A time-varying parameter structural model of the UK  economy. Journal of Economic Dynamics and Control, 106, Article 103735.  https://doi.org/10.1016/j.jedc.2019.05.012
Koopman, S. J., Lucas, A.,  & Scharth, M. (2016). Predicting  time-varying parameters with parameter-driven and observation-driven models. The  Review of Economics and Statistics, 98(1), 97–110.  https://doi.org/10.1162/REST_a_00533
Lit, R., Koopman, S. J., &  Harvey, A. C. (2022). Time Series Lab. https://timeserieslab.com 
Makridakis, S., Wheelwright,  S. C., & Hyndman, R. J. (1998). Forecasting: Methods and applications (3rd ed.). Wiley.
Mankiw, N. G. (2018). Principles  of macroeconomics (8th ed.). Cengage Learning.
Organisation for Economic Co-operation and Development (2024). OECD economic outlook. OECD Publishing.  https://doi.org/10.1787/d8814e8b-en
Ranasinghe, P. W., &  Suriyaarachchi, D. J. (2015). Forecasting gross domestic product (GDP) in Sri  Lanka using time series analysis. In 2nd International Conference on  Multidisciplinary Approaches (p. 152). University of Sri Jayewardenepura. https://graduate.sjp.ac.lk/icma/wp-content/uploads/2019/10/iCMA_abstract_2015_P152.pdf 
Romer, P. M. (1990).  Endogenous technological change. Journal of Political Economy, 98(5),  S71–S102.
Song, H., Lee, G., Witt, S.  F., & Athanasopoulos, G. (2011). Forecasting tourist arrivals using  time-varying parameter structural time series models. International Journal  of Forecasting, 27(3), 855–869.  https://doi.org/10.1016/j.ijforecast.2010.06.001
Sridharan, S., Vujic, S.,  & Koopman, S. J. (2003). Intervention time series analysis of crime rates. Tinbergen  Institute Discussion Papers. https://papers.tinbergen.nl/03040.pdf
General Information
Executive Editor:Prof. Donald L. Horowitz Dr. RASP Ranabahu Dr. PKM Dissanayake
Dr. KH Ramanayaka
Dr. A Kariyawasam
- 
                  
Vol 10. Issue 1 [Click]
 - 
                  
Vol 10. Issue 2 [Click]
 - Read more>>
 
